Part Number Hot Search : 
SGRF303 AY0438IS SD840 C1024 2SC13 LA6358 10350 BFR30
Product Description
Full Text Search
 

To Download MGA-64606-BLKG Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  mga-64606 low noise amplifi er with switchable bypass/shutdown mode in low profi le package data sheet description avago technologies mga-64606 is an economical, easy-to-use gaas mmic low noise amplifi er (lna) with bypass/ shutdown mode. the lna has low noise and high linearity achieved through the use of avago technologies proprietary 0.25 ? m gaas enhancement-mode phemt process. the bypass/shutdown mode enables the lna to be bypassed during high input signal power and reduce current consumption. it is housed in a low profi le 2.0 x 1.3 x 0.5mm 3 6-pin ultra thin package. the compact footprint and low profi le coupled with low noise, high linearity make the mga-64606 an ideal choice as a low noise amplifi er for mobile receiver in the wimax, wlan(802.11b/g), wibro and dmb applications. component image 2.0 x 1.3 x 0.5 mm 3 6-lead ultra thin package note: package marking provides orientation and identifi cation 64 = product code x = month code features ?? low current consumption ?? adjustable bias current ?? 1.5 ghz C 3 ghz operating range ?? low noise figure ?? low current consumption in bypass mode, <100 ? a ?? fully matched to 50 ohm in bypass mode ?? high linearity (lna and bypass mode) ?? low profi le package typical performance 2.4 ghz; 3v , 7ma (typ): ?? 15.3 db gain ?? 0.95 db noise figure ?? +5.0 dbm input ip3 ?? -3.0 dbm input power at 1 db gain compression ?? 3.8 db insertion loss in bypass mode ?? 12 dbm iip3 in bypass mode (pin = -20 dbm) ?? <100 ? a current consumption in bypass mode applications ?? low noise amplifi er for gps, wimax, wlan, wibro and dmb applications. ?? other ultra low noise applications in the 1.5 C 3 ghz band. simplifi ed schematic attention: observe precautions for handling electrostatic sensitive devices. esd machine model = 60 v esd human body model = 300 v refer to avago application note a004r: electrostatic discharge, damage and control. 64x pin confi guration pin 1 (vbias) pin 3 (gnd) pin 6 (vsd) pin 5 (rfout) pin 4 (vdd) gnd pin 2 (rfin) top view r r f i nr f o ut l n a vb ias control vs d l c c l v dd 1 2 3 4 5 6 r l b ias /
2 absolute maximum rating [1] t a = 25 c symbol parameter units absolute maximum v dd device voltage, rf output to ground v 5 vbias control voltage v (vdd-0.3) p in,max cw rf input power dbm +12 p diss total power dissipation mw 94 t j junction temperature c 150 t stg storage temperature c -65 to 150 thermal resistance thermal resistance [2,3] (v dd = 3.0 v, id = 7 ma), ? jc = 60 c/w notes: 1. operation of this device in excess of any of these limits may cause permanent damage. 2. thermal resistance measured using infra-red measurement technique. 3. board temperature (t b ) is 25 c. for t b >146 c, derate the device power at 14 mw per c rise in board (pakcage belly) temperature. product consistency distribution charts [1] figure 1. gain @ 2.4 ghz,vdd 3 v; vbias 1.8 v lsl = 14.3 db, nominal = 15.3 db, usl = 16.7 db figure 2. nf@ 2.4 ghz,vdd 3 v; vbias 1.8 v nominal = 0.95 db, usl = 1.2 db figure 3. idd @ 2.4 ghz, vdd 3 v; vbias 1.8 v nominal = 7.0 ma,usl = 10.0 ma 1 3 . 5 1 4 1 4 . 5 1 5 . 5 1 6 . 5 17. 5 1 5 1 6 17 lsl usl 456 78910111 2 1 3 usl usl 0.8 0.9 1 1. 2 1.1 1. 3 note: 1. distribution data sample size is 3000 samples taken from 3 diff erent wafers and 3 diff erent lots. future wafers allocated to this product may have nominal values anywhere between the upper and lower limits.
3 electrical specifi cations [1] t a = 25 c, vdd = 3 v, vbias = 1.8 v, rf measurement at 2.4 ghz C typical performance. see fig 4 and fig 6 for demo board and schematic. symbol parameter and test condition units min. typ. max. lna mode performance ( vdd = 3 v,vbias = 1.8 v & vsd = 0 v) idd bias current ma C 7 11 gain gain db 14 15.3 17 nf noise figure db C 0.95 1.2 iip3 input third order intercept point dbm C +5.0 C ip1db input power at 1 db gain compression dbm C -3.0 C s11 input return loss, 50 ? source db C -11 C s22 output return loss, 50 ? load db C -12 C s12 reverse isolation db C -23 C bypass mode performance ( vdd = 3 v,vbias = 0 v & vsd = 0 v) |s21| bypass bypass mode insertion loss db C 3.8 C iip3 bypass bypass mode iip3 (tested at -20 dbm input power) dbm C 12 C idd bypass bypass mode current ? a C65C shutdown mode performance ( vdd = 3 v,vbias = 0 v & vsd = 3 v) |s21| shutdown shutdown mode isolation db C 16 C idd shutdown shutdown mode current ? a C 100 C note: 1. 2.4 ghz iip3 test condition: f rf1 = 2.395 ghz, f rf2 = 2.4 ghz with input power of -30 dbm per tone. table 1. lna switch truth table vbias (v) / vsd (v) vdd (v) mode 1.8 / 0 [1] 3 lna 0 / 0 [2] 3 bypass 0 / 3 [3] 3 shutdown notes: 1. device operation in lna mode if vbias > 1.5 v and vsd < 0.5 v. bias current of lna can be varied with diff erent values of vbias for vbias > 1.5 v. see fig 5 below. 2. device operation in bypass mode if vbias < 0.3 v and vsd < 0.5 v. 3. device is shutdown if vsd > 2.2 v. in shutdown mode, lna and internal bypass switch is turned off. shutdown mode overrides vbias voltage setting. pin 6 (vsd) is a pull-down logic function pin and recommend to ground it if shutdown function is not used in application.
4 demo board layout figure 4. demo board layout diagram 1 2 3 4 rf input rf output a vag o o c t 2 0 1 0 techn o l o gies mimo sa v2 gnd in o u t gnd gnd vdd vsd vbias r2 r1 l1 l2 l3 c 1 c 2 56 gnd gnd vbias vsd vdd gnd application notes 1. performance in a specifi ed frequency band can be optimized by changing component values in the demo board above to suit the application at that frequency. the schematic on page 5 and 11 show two sets of components used to demonstrate performance at the (2.3 C 2.4) ghz wibro band and (2.5 C 2.7) ghz wimax/dmb band. 2. pin1 (vbias pin) voltage in lna mode can be varied to enable the lna bias current to be adjusted, refer to next graph: figure 5. id vs vbias (vdd = 3 v; vsd = 0 v). vbias is varies in this plot. 0 2 4 6 8 1 0 12 1 .0 1 . 21 . 41 . 61 .8 2 .0 2 . 22 . 42 . 62 .8 3 .0 id (m a ) vbias (v)
5 demo board schematic for 2.3 C 2.4 ghz application 5 0- o h ms tl 5 0- o h ms tl r f i n ( pi n 2 ) r f o ut ( pi n 5 ) l n a v b ias ( pi n 1) b ias / control b ias / control b ias / control vs d ( pi n 6 ) l 3 c1 l1 1 2 3 4 5 6 l 2 g n d ( pi n 3 ) c 2 v dd r 1 v dd ( pi n 4 ) r2 figure 6. demo board schematic diagram table 2 typical components used for demo board in fig 4 and schematic shown in fig 6. r2 is adjusted for desired current. component vendor size value l1 taiyo yuden 0402 2.7 nh l2 taiyo yuden 0402 5.1 nh l3 taiyo yuden 0402 2.4 nh c1 taiyo yuden 0402 10 pf c2 murata 0402 0.1 ? f r1 rohm 0402 10 ohm r2 rohm 0402 2.7 kohm mga-64606 typical performance (2.4 ghz match) t a = +25 c, v dd = 3 v, i ds = 7 ma (vbias = 1.8 v), rf mea- surement at 2.4 ghz, input signal = cw unless stated otherwise. figure 7. lna mode gain, input return loss, output return loss, isolation vs frequency -6 0 -5 0 -4 0 -3 0 -2 0 -1 0 0 1 0 2 0 1 .0 1 . 52 .0 2 . 53 .0 3 . 54 .0 4 . 55 .0 5 . 56 .0 f r equency (ghz) d b input retu r n l o ss output retu r n l o ss gain is o lati o n
6 lna mode plots (2.4 ghz match); vdd = 3 v, vbias = 1.8 v, vsd = 0 v figure 8. lna mode gain vs frequency vs id figure 9. lna mode noise figure vs frequency vs id figure 10. lna mode gain vs id vs temperature figur e 11. lna noise figure vs id vs temperature figure 12. lna mode ip1db vs id vs temperature figure 13. lna mode iip3 vs id vs temperature 4 6 8 1 0 12 14 16 1 8 2 0 2 .0 2 . 22 . 42 . 62 .8 3 .0 gain (d b ) f r equency (ghz) 12 .0 12 . 5 13 .0 13 . 5 14 .0 14 . 5 15 .0 15 . 5 16 .0 16 . 5 1 7.0 456 789 gain (d b ) id (m a ) 0.0 0. 5 1 .0 1 . 5 2 .0 2 . 5 2 .0 2 . 22 . 42 . 62 .8 3 .0 nf (d b ) f r equency (ghz) 0.0 0. 2 0. 4 0. 6 0.8 1 .0 1 . 2 1 . 4 1 . 6 456 789 nf (d b ) id (m a ) - 7 -6 -5 -4 -3 -2 -1 0 456 789 ip1d b (d b m) id (m a ) 0 1 2 3 4 5 6 7 456 789 iip3 (d b m) id (m a ) 4 m a 7 m a 9 m a -4 0 25 8 5 25 c 8 5 c -4 0 c 25 c 8 5 c -4 0 c 25 c 8 5 c -4 0 c 4 m a 7 m a 9 m a
7 lna mode plots (2.4 ghz match); vdd = 3 v, vbias = 1.8 v, vsd = 0 v figure 14. edwards-sinsky output stability factor(mu) at vdd = 3 v figure 15. edwards-sinsky input stability factor(mu) at vdd = 3 v bypass mode plots (2.4 ghz match); vdd = 3 v, vbias = 0 v, vsd = 0 v figure 16. bypass mode gain, input return loss, output return loss, isolation vs frequency figure 17. bypass mode insertion loss vs frequency vs temperature figure 18. bypass mode iip3 vs frequency vs temperature figure 19. bypass mode iip3 vs input power -5 0 -45 -4 0 -35 -3 0 -25 -2 0 -15 -1 0 -5 0 1 .0 1 . 52 .0 2 . 53 .0 3 . 54 .0 4 . 55 .0 5 . 56 .0 d b f r equency (ghz) input retu r n l o ss output retu r n l o ss gain is o lati o n 25 c 8 5 c -4 0 c -1 0 - 9 - 8 - 7 -6 -5 -4 -3 -2 2 .0 2 . 22 . 42 . 62 .8 3 .0 b ypass inse r ti o n l o ss (d b ) f r equency (ghz) 0 5 1 0 15 2 0 25 3 0 2 .0 2 . 2 2 . 4 2 . 62 .8 3 .0 iip3 (d b m) f r equency (ghz) 0 2 4 6 8 1 0 12 14 16 1 8 -3 0 -25 -2 0 -15 -1 0 -5 0 5 iip3 (d b m) pin (d b m) 25 c 8 5 c -4 0 c
8 shutdown mode plots (2.4 ghz match); vdd = 3 v, vbias = 0 v, vsd = 3 v figure 20. shutdown mode gain, input return loss, output return loss, isolation vs frequency figure 21. shutdown mode isolation vs frequency vs temperature demo board schematic for 2.5 C 2.7 ghz application 5 0- o h ms tl 5 0- o h ms tl r f i n ( pi n 2 ) r f o ut ( pi n 5 ) l n a v b ias ( pi n 1) b ias / control b ias / control b ias / control vs d ( pi n 6 ) l 3 c1 l1 1 2 3 4 5 6 l 2 g n d ( pi n 3 ) c 2 v dd r 1 v dd ( pi n 4 ) r2 figure 22. demo board schematic diagram table 3 typical components used for demo board in fig 4 and schematic shown in fig 22. component vendor size value l1 taiyo yuden 0402 1.8 nh l2 taiyo yuden 0402 3.9 nh l3 taiyo yuden 0402 1.5 nh c1 taiyo yuden 0402 10 pf c2 murata 0402 0.1 ? f r1 rohm 0402 10 ohm r2 rohm 0402 2.7 kohm mga-64606 typical performance (2.6 ghz match) t a = +25 c, v dd = 3 v, i ds = 7 ma (vbias = 1.8 v), rf mea- surement at 2.6 ghz, input signal=cw unless stated otherwise. figure 23. lna mode gain, input return loss, output return loss, isolation vs frequency -6 0 -5 0 -4 0 -3 0 -2 0 -1 0 0 1 0 2 0 1 .0 1 . 52 .0 2 . 53 .0 3 . 54 .0 4 . 55 .0 5 . 56 .0 d b f r equency (ghz) input retu r n l o ss output retu r n l o ss gain is o lati o n -5 0 -45 -4 0 -35 -3 0 -25 -2 0 -15 -1 0 -5 0 1 .0 1 . 52 .0 2 . 53 .0 3 . 54 .0 4 . 56 .0 5 . 5 5 .0 d b f r equency (ghz) input retu r n l o ss output retu r n l o ss gain is o lati o n -26 -24 -22 -2 0 -1 8 -16 -14 2 .0 2 . 22 . 42 . 62 .8 3 .0 s hutd o wn is o lati o n (d b ) f r equency (ghz) 25 c 8 5 c -4 0 c
9 lna mode plots (2.6 ghz match); vdd = 3 v, vbias = 1.8 v, vsd = 0 v figure 24. lna mode gain vs frequency vs id figure 25. lna mode noise figure vs frequency vs id figure 26. lna mode gain vs id vs temperature figur e 27. lna mode noise figure vs id vs temperature figure 28. lna mode ip1db vs id vs temperature figure 29. lna mode iip3 vs id vs temperature 4 6 8 1 0 12 14 16 1 8 2 .0 2 . 22 . 42 . 62 .8 3 .0 gain (d b ) f r equency (ghz) 12 .0 12 . 5 13 .0 13 . 5 14 .0 14 . 5 15 .0 15 . 5 16 .0 16 . 5 456 789 gain (d b ) id (m a ) - 7 -6 -5 -4 -3 -2 -1 0 456 789 ip1d b (d b m) id (m a ) 0 1 2 3 4 5 6 7 456 789 iip3 (d b m) id (m a ) 25 c 8 5 c -4 0 c 25 c 8 5 c -4 0 c 4 m a 7 m a 9 m a 25 c 8 5 c -4 0 c 25 c 8 5 c -4 0 c 0.0 0. 5 1 .0 1 . 5 2 .0 2 . 5 2 .0 2 . 22 . 42 . 62 .8 3 .0 nf (d b ) f r equency (ghz) 0.0 0. 2 0. 4 0. 6 0.8 1 .0 1 . 2 1 . 4 1 . 6 456 789 nf (d b ) id (m a ) 4 m a 7 m a 9 m a
10 lna mode plots (2.6 ghz match); vdd = 3 v, vbias = 1.8 v, vsd = 0 v figure 30. edwards-sinsky output stability factor (mu) at vdd = 3 v figure 31. edwards-sinsky input stability factor (mu) at vd d = 3 v bypass mode plots (2.6 ghz match); vdd = 3 v, vbias = 0 v, vsd = 0 v figure 32. bypass mode gain, input return loss, output return loss, isolation vs frequency figure 33. bypass mode insertion loss vs frequency vs temperature figure 34. bypass mode iip3 vs frequency vs temperature figure 35. bypass mode iip3 vs input power -5 0 -45 -4 0 -35 -3 0 -25 -2 0 -15 -1 0 -5 0 1 .0 1 . 52 .0 2 . 53 .0 3 . 54 .0 4 . 55 .0 5 . 56 .0 f r equency (ghz) d b input retu r n l o ss output retu r n l o ss gain is o lati o n -12 -1 0 - 8 -6 -4 -2 0 2 .0 2 . 22 . 42 . 62 .8 3 .0 b ypass inse r ti o n l o ss (d b ) f r equency (ghz) 0 5 1 0 15 2 0 25 2 .0 2 . 22 . 42 . 62 .8 3 .0 iip3 (d b m) f r equency (ghz) 0 2 4 6 8 1 0 12 14 16 1 8 -3 0 -25 -2 0 -15 -1 0 -5 0 5 iip3 (d b m) pin (d b m) 25 c 8 5 c -4 0 c 25 c 8 5 c -4 0 c
11 shutdown mode plots (2.6 ghz match); vdd = 3 v, vbias = 0 v, vsd = 3 v figure 36. shutdown mode gain, input return loss, output return loss, isolation vs frequency figure 37. shutdown mode isolation vs frequency vs temperature test circuit for s- and noise parameter measurement [1] (2.4 ghz match) figure 38. s-parameter and noise parameter test circuit on demo board component vendor size value l3 taiyo yuden 0402 2.4 nh c1 taiyo yuden 0402 10 pf c2 murata 0402 0.1 ? f r1 rohm 0402 10 ohm r2 r f i n ( pi n 2 ) r f o ut ( pi n 5 ) l n a v b ias ( pi n 1) b ias / control b ias / control b ias / control vs d ( pi n 6 ) l 3 1 2 34 5 6 g n d ( pi n 3 ) c 2 c1 v dd ( pi n 4 ) r 1 re f e r e n ce p l a n e mg a- 646 0 6 note: 1. the measurement is calibrated up to the input (rfin) and output (rfout) pin of the package. -5 0 -45 -4 0 -35 -3 0 -25 -2 0 -15 -1 0 -5 0 1 .0 1 . 52 .0 2 . 53 .0 3 . 54 .0 4 . 55 .0 5 . 56 .0 f r equency (ghz) d b input retu r n l o ss output retu r n l o ss gain is o lati o n -3 0 -2 8 -26 -24 -22 -2 0 -1 8 -16 -14 -12 -1 0 2 .0 2 . 22 . 42 . 62 .8 3 .0 s hutd o wn is o lati o n (d b ) f r equency (ghz) 25 c 8 5 c -4 0 c
12 mga-64606 lna mode typical scattering parameters at 25 c, vdd = 3 v; vbias = 1.8 v; vsd = 0 v frequency (ghz) s11 s21 s12 s22 mag angle db mag angle db mag angle mag angle 0.5 0.952 -21.7 -7.50 0.422 -89.5 -65.71 0.001 154.1 0.980 -17.9 1.0 0.862 -41.7 -1.32 0.859 -129.2 -50.53 0.003 155.7 0.932 -34.9 1.5 0.839 -58.9 5.89 1.969 -118.1 -39.13 0.011 -165.4 0.874 -57.8 2.0 0.577 -92.4 15.00 5.622 155.0 -26.19 0.049 120.9 0.227 -7.1 2.1 0.493 -90.1 14.21 5.134 136.2 -26.33 0.048 104.1 0.442 -5.0 2.2 0.457 -86.4 13.18 4.561 121.9 -26.79 0.046 92.2 0.587 -13.1 2.3 0.445 -83.9 12.16 4.057 110.9 -27.28 0.043 83.3 0.674 -20.8 2.4 0.442 -83.0 11.24 3.649 102.0 -27.64 0.041 76.5 0.730 -27.5 2.5 0.441 -83.1 10.43 3.322 94.4 -27.92 0.040 71.2 0.765 -33.4 2.6 0.439 -84.1 9.72 3.061 87.8 -28.14 0.039 66.3 0.790 -38.7 2.7 0.437 -85.5 9.08 2.846 81.8 -28.28 0.039 62.0 0.806 -43.7 2.8 0.434 -87.3 8.52 2.665 76.2 -28.46 0.038 59.0 0.818 -48.4 2.9 0.432 -89.3 8.00 2.513 70.9 -28.52 0.038 55.7 0.827 -53.0 3.0 0.428 -91.4 7.53 2.380 65.8 -28.58 0.037 52.2 0.834 -57.5 3.5 0.409 -103.2 5.57 1.899 42.8 -28.57 0.037 38.8 0.853 -78.8 4.0 0.394 -114.7 3.93 1.571 22.5 -28.51 0.038 27.4 0.869 -98.0 4.5 0.382 -124.4 2.48 1.330 5.0 -28.56 0.037 18.2 0.885 -113.3 5.0 0.366 -131.9 1.33 1.166 -10.1 -28.36 0.038 12.2 0.899 -124.2 5.5 0.371 -146.7 -0.21 0.976 -26.1 -28.68 0.037 5.0 0.907 -138.9 6.0 0.400 -155.4 -1.30 0.861 -40.9 -28.69 0.037 -0.9 0.909 -149.3 6.5 0.421 -162.0 -2.31 0.767 -55.0 -28.55 0.037 -5.1 0.908 -160.4 7.0 0.434 -167.0 -3.26 0.687 -68.5 -28.41 0.038 -8.8 0.905 -172.8 7.5 0.441 -171.7 -4.21 0.616 -82.0 -28.22 0.039 -11.6 0.904 173.4 8.0 0.447 -177.6 -5.23 0.548 -95.4 -27.96 0.040 -14.3 0.904 159.2 8.5 0.464 174.8 -6.31 0.483 -109.0 -27.69 0.041 -16.8 0.910 145.7 9.0 0.500 164.9 -7.49 0.422 -123.7 -27.34 0.043 -20.5 0.914 134.1 9.5 0.583 151.6 -8.85 0.361 -144.3 -26.84 0.045 -28.9 0.914 125.0 10.0 0.502 137.6 -13.09 0.221 -139.8 -28.92 0.036 -23.9 0.918 119.5
13 mga-64606 bypass mode typical scattering parameters at 25 c, vdd = 3 v; vbias = 0 v; vsd = 0 v frequency (ghz) s11 s21 s12 s22 mag angle db mag angle db mag angle mag angle 0.5 0.947 -27.9 -39.24 0.011 179.4 -39.07 0.011 178.3 0.979 -18.0 1.0 0.867 -54.3 -26.23 0.049 143.6 -26.22 0.049 143.7 0.928 -34.7 1.5 0.718 -82.1 -13.73 0.206 153.2 -13.74 0.206 153.2 0.809 -58.9 2.0 0.707 -72.5 -7.15 0.439 50.3 -7.14 0.439 50.3 0.671 -26.6 2.1 0.744 -78.4 -7.90 0.403 39.5 -7.89 0.403 39.5 0.742 -31.9 2.2 0.762 -84.0 -8.50 0.376 31.2 -8.50 0.376 31.2 0.784 -37.0 2.3 0.771 -89.2 -8.97 0.356 24.3 -8.97 0.356 24.3 0.809 -41.6 2.4 0.774 -94.0 -9.36 0.341 18.3 -9.35 0.341 18.3 0.826 -45.9 2.5 0.775 -98.7 -9.67 0.329 12.8 -9.65 0.329 12.8 0.836 -50.0 2.6 0.774 -103.2 -9.92 0.319 7.7 -9.92 0.319 7.8 0.843 -54.0 2.7 0.772 -107.5 -10.12 0.312 3.0 -10.12 0.312 3.0 0.847 -58.0 2.8 0.770 -111.7 -10.30 0.305 -1.7 -10.30 0.305 -1.6 0.850 -61.9 2.9 0.769 -115.8 -10.47 0.300 -6.1 -10.46 0.300 -6.2 0.852 -65.9 3.0 0.767 -119.7 -10.62 0.294 -10.6 -10.62 0.294 -10.6 0.853 -69.9 3.5 0.760 -138.4 -11.35 0.271 -31.1 -11.35 0.271 -31.1 0.859 -89.7 4.0 0.758 -154.8 -12.17 0.246 -49.6 -12.17 0.246 -49.7 0.868 -107.8 4.5 0.755 -169.6 -13.02 0.223 -65.9 -13.02 0.223 -65.9 0.879 -122.2 5.0 0.742 176.3 -13.75 0.205 -80.4 -13.74 0.206 -80.4 0.885 -132.6 5.5 0.761 163.9 -15.38 0.170 -95.1 -15.38 0.170 -95.1 0.893 -146.4 6.0 0.764 154.0 -16.56 0.149 -108.6 -16.56 0.149 -108.7 0.889 -156.7 6.5 0.765 145.4 -17.91 0.127 -122.6 -17.89 0.127 -122.7 0.883 -167.7 7.0 0.771 137.9 -19.57 0.105 -138.2 -19.55 0.105 -138.3 0.873 -179.9 7.5 0.791 130.5 -21.98 0.080 -157.6 -21.95 0.080 -157.8 0.866 166.7 8.0 0.833 122.5 -25.85 0.051 175.3 -25.80 0.051 175.3 0.860 153.2 8.5 0.890 112.6 -31.72 0.026 123.9 -31.66 0.026 124.0 0.859 140.7 9.0 0.923 100.5 -32.81 0.023 37.2 -32.83 0.023 37.5 0.855 130.4 9.5 0.909 88.6 -32.29 0.024 3.4 -32.32 0.024 3.3 0.853 124.4 10.0 0.868 78.3 -26.80 0.046 8.9 -26.83 0.046 8.8 0.912 118.6
14 mga-64606 lna mode typical noise parameters at 25 c, vdd = 3 v; vbias = 1.8 v; vsd = 0 v freq. (ghz) fmin (db) ? opt mag ? opt ang rn/50 2.0 0.90 0.37 70.40 0.04 2.1 0.78 0.37 71.50 0.05 2.2 0.72 0.38 72.60 0.07 2.3 0.71 0.38 73.70 0.09 2.4 0.77 0.38 74.75 0.13 2.5 0.89 0.39 75.83 0.18 2.6 1.07 0.39 76.92 0.24 2.7 1.30 0.39 78.00 0.30 2.8 1.59 0.40 79.09 0.38 2.9 1.95 0.40 80.18 0.47 3.0 2.36 0.40 81.26 0.57 3.1 2.83 0.41 82.35 0.68 3.2 3.36 0.41 83.43 0.80 3.3 3.95 0.41 84.52 0.94 3.4 4.60 0.42 85.61 1.08 3.5 5.31 0.42 86.69 1.23 3.6 6.08 0.42 87.78 1.39 3.7 6.90 0.43 88.86 1.56 3.8 7.79 0.43 89.95 1.75 3.9 8.73 0.43 91.04 1.94 4.0 9.73 0.43 92.12 2.15 test circuit for s- and noise parameter measurement [1] (2.6 ghz match) figure 39. s-parameter and noise parameter test circuit on demo board component vendor size value l3 taiyo yuden 0402 1.5 nh c1 taiyo yuden 0402 10 pf c2 murata 0402 0.1 ? f r1 rohm 0402 10 ohm r2 r f i n ( pi n 2 ) r f o ut ( pi n 5 ) l n a v b ias ( pi n 1) b ias / control b ias / control b ias / control vs d ( pi n 6 ) l 3 1 2 34 5 6 g n d ( pi n 3 ) c 2 c1 v dd ( pi n 4 ) r 1 re f e r e n ce p l a n e mg a- 646 0 6 note: 1. the measurement is calibrated up to the input (rfin) and output (rfout) pin of the package
15 mga-64606 lna mode typical scattering parameters at 25 c, vdd = 3 v; vbias = 1.8 v; vsd = 0 v frequency (ghz) s11 s21 s12 s22 mag angle db mag angle db mag angle mag angle 0.5 0.950 -22.6 -8.49 0.376 -95.6 -62.99 0.001 156.3 0.981 -18.2 1.0 0.863 -41.9 -3.11 0.699 -138.9 -53.07 0.002 145.1 0.940 -34.8 1.5 0.824 -55.6 0.81 1.098 -114.4 -44.71 0.006 -162.3 0.925 -53.3 2.0 0.784 -82.2 12.86 4.393 -160.1 -28.41 0.038 166.0 0.552 -102.4 2.1 0.710 -90.5 14.23 5.147 179.4 -26.35 0.048 147.9 0.297 -117.2 2.2 0.602 -96.3 14.67 5.413 157.8 -25.30 0.054 128.4 0.052 -51.8 2.3 0.504 -97.3 14.30 5.190 138.5 -25.08 0.056 111.7 0.267 3.6 2.4 0.444 -94.9 13.52 4.743 122.9 -25.32 0.054 97.9 0.449 -6.4 2.5 0.414 -91.9 12.62 4.274 110.5 -25.73 0.052 87.7 0.568 -16.3 2.6 0.400 -90.2 11.74 3.863 100.3 -26.10 0.050 79.5 0.646 -24.8 2.7 0.394 -89.7 10.93 3.520 91.9 -26.40 0.048 73.3 0.698 -32.1 2.8 0.390 -90.3 10.20 3.236 84.5 -26.69 0.046 67.7 0.734 -38.4 2.9 0.388 -91.7 9.55 3.002 77.8 -26.95 0.045 63.3 0.760 -44.2 3.0 0.385 -93.6 8.95 2.803 71.8 -27.07 0.044 59.2 0.778 -49.6 3.5 0.375 -107.2 6.58 2.133 45.9 -27.49 0.042 42.3 0.827 -72.8 4.0 0.378 -121.0 4.73 1.724 24.3 -27.68 0.041 29.5 0.852 -92.3 4.5 0.388 -131.1 3.18 1.442 5.8 -27.68 0.041 20.0 0.872 -108.1 5.0 0.388 -136.8 1.97 1.255 -10.0 -27.60 0.042 13.1 0.887 -120.3 5.5 0.400 -147.3 0.39 1.046 -26.7 -27.96 0.040 5.0 0.897 -137.3 6.0 0.418 -153.0 -0.77 0.916 -42.1 -28.00 0.040 -1.2 0.904 -149.6 6.5 0.420 -158.5 -1.83 0.810 -56.6 -28.01 0.040 -6.1 0.909 -161.6 7.0 0.411 -165.2 -2.79 0.725 -70.3 -27.83 0.041 -10.1 0.910 -173.4 7.5 0.403 -174.7 -3.70 0.653 -83.9 -27.60 0.042 -12.6 0.910 174.6 8.0 0.413 172.8 -4.66 0.584 -98.0 -27.26 0.043 -15.7 0.906 161.8 8.5 0.454 160.7 -5.77 0.515 -111.9 -27.05 0.044 -18.9 0.908 148.9 9.0 0.516 151.3 -7.03 0.445 -126.3 -26.72 0.046 -22.5 0.908 136.6 9.5 0.580 144.2 -8.39 0.381 -141.1 -26.36 0.048 -25.8 0.913 125.9 10.0 0.638 136.8 -9.77 0.325 -160.2 -25.28 0.054 -37.3 0.885 118.0
16 mga-64606 bypass mode typical scattering parameters at 25 c, vdd = 3 v; vbias = 0 v; vsd = 0 v frequency (ghz) s11 s21 s12 s22 mag angle db mag angle db mag angle mag angle 0.5 0.949 -28.7 -40.47 0.009 171.4 -40.13 0.010 173.4 0.980 -18.2 1.0 0.884 -54.2 -28.15 0.039 134.3 -28.18 0.039 134.8 0.938 -34.5 1.5 0.805 -78.6 -19.50 0.106 163.1 -19.48 0.106 163.0 0.906 -53.7 2.0 0.474 -73.1 -5.43 0.535 85.9 -5.42 0.536 85.9 0.309 -47.1 2.1 0.581 -70.7 -5.61 0.524 65.1 -5.60 0.525 65.0 0.447 -27.9 2.2 0.660 -75.5 -6.24 0.487 49.6 -6.25 0.487 49.5 0.582 -29.5 2.3 0.704 -81.7 -6.91 0.451 38.0 -6.91 0.451 38.0 0.668 -34.5 2.4 0.729 -87.7 -7.50 0.422 28.9 -7.50 0.422 28.8 0.723 -39.8 2.5 0.741 -93.5 -8.00 0.398 21.3 -7.99 0.398 21.2 0.757 -44.6 2.6 0.746 -99.0 -8.41 0.380 14.6 -8.41 0.380 14.6 0.781 -49.3 2.7 0.749 -104.3 -8.76 0.365 8.6 -8.76 0.365 8.6 0.796 -53.7 2.8 0.749 -109.5 -9.06 0.352 3.0 -9.06 0.352 3.0 0.808 -58.0 2.9 0.749 -114.5 -9.32 0.342 -2.2 -9.33 0.342 -2.3 0.817 -62.1 3.0 0.750 -119.4 -9.57 0.332 -7.2 -9.56 0.333 -7.2 0.823 -66.2 3.5 0.753 -141.4 -10.64 0.294 -29.8 -10.65 0.294 -29.9 0.845 -86.0 4.0 0.763 -159.0 -11.71 0.260 -49.1 -11.71 0.260 -49.1 0.860 -103.9 4.5 0.769 -172.6 -12.69 0.232 -65.3 -12.69 0.232 -65.3 0.871 -118.8 5.0 0.760 175.6 -13.43 0.213 -79.7 -13.43 0.213 -79.7 0.875 -130.6 5.5 0.773 165.1 -15.00 0.178 -94.6 -15.00 0.178 -94.7 0.883 -146.4 6.0 0.768 155.0 -16.14 0.156 -109.0 -16.14 0.156 -109.0 0.882 -158.4 6.5 0.761 144.0 -17.50 0.133 -124.2 -17.50 0.133 -124.2 0.881 -169.8 7.0 0.765 132.1 -19.28 0.109 -141.0 -19.27 0.109 -141.0 0.877 179.0 7.5 0.794 120.4 -21.89 0.080 -161.4 -21.90 0.080 -161.4 0.871 167.4 8.0 0.849 110.1 -26.31 0.048 170.6 -26.22 0.049 170.6 0.860 155.3 8.5 0.912 101.2 -33.08 0.022 116.9 -33.09 0.022 117.2 0.858 143.0 9.0 0.939 93.0 -32.82 0.023 27.3 -32.89 0.023 27.1 0.853 131.6 9.5 0.918 85.3 -29.69 0.033 -6.5 -29.72 0.033 -5.8 0.851 122.0 10.0 0.871 77.4 -29.19 0.035 -18.1 -29.15 0.035 -17.9 0.814 116.4
17 mga-64606 lna mode typical noise parameters at 25 c, vdd = 3 v; vbias = 1.8 v; vsd = 0 v freq. (ghz) fmin (db) ? opt mag ? opt ang rn/50 2.0 1.03 0.43 62.70 0.06 2.1 0.84 0.42 63.50 0.07 2.2 0.72 0.42 64.90 0.08 2.3 0.65 0.42 66.20 0.11 2.4 0.65 0.41 67.50 0.14 2.5 0.71 0.41 68.80 0.18 2.6 0.83 0.40 70.13 0.23 2.7 1.01 0.40 71.44 0.28 2.8 1.25 0.40 72.75 0.34 2.9 1.55 0.39 74.06 0.41 3.0 1.91 0.39 75.37 0.49 3.1 2.34 0.39 76.68 0.57 3.2 2.82 0.38 77.99 0.66 3.3 3.37 0.38 79.30 0.76 3.4 3.97 0.37 80.61 0.86 3.5 4.64 0.37 81.92 0.98 3.6 5.37 0.37 83.23 1.10 3.7 6.16 0.36 84.54 1.22 3.8 7.01 0.36 85.85 1.36 3.9 7.92 0.36 87.16 1.50 4.0 8.89 0.35 88.47 1.65
18 package dimensions pcb land patterns and stencil design notes: 1. all dimensions are in milimeters. 2. dimensions are inclusive of plating. 3. dimensions are exclusive of mold ?ash and metal burr. 2 .00 0.0 5 1 . 3 0 0.0 5 top view pin#1 dot by ma r king 64x s ide view 0. 5 0 0.0 5 pin#1 indicat or r 0. 1 0 b ottom view 1 . 1 0 1 . 1 0 0. 5 0 0. 2 0 0. 25 t o p metal so lde r mask opening notes: 1. all dimension are in mm. 2. recommend to use standard 4 mils stencil thickness. 1 .70 1 . 3 0 0. 3 0 0. 35 0. 435 0. 332 1 . 1 0 0. 31 r 0. 1 0 0. 23 0. 2 8 6 sq . 0. 3 8 6 sq . 0. 5 0 0. 445 l a nd p a ttern with vi a 1 .70 1 . 1 0 0. 26 sq . 0. 23 0. 31 0. 5 0 0. 51 0 s ten c il opening 1 .70 0. 23 0. 5 0 0. 26 sq . 0. 2 8 6 sq . 1 . 1 0 0. 31 c om b ined l a nd p a ttern & s ten c il opening
19 device orientation us er feed dire c tion top view end view us er feed dire c tion c over t a pe ca rrier t a pe reel 64x 64x 64x tape dimensions (all dimensions in mm) 4 .00 0. 1 0 4 .00 0. 1 0 8.00 + 0. 3 0 ? 0. 1 0 ? 0. 5 0 + 0.0 5 ? 0. 1 0 2 .00 0.0 5 3 . 5 0 0.0 5 1 .7 5 0. 1 0 ? 1 . 5 0 0. 1 0 0. 2 0 0. 2 0 0. 15 2 . 1 7 0.0 5 1 . 6 7 0.0 5 45 m a x . 45 m a x . 0.7 3 0.0 5 a o k o b o part number ordering information part # qty container MGA-64606-BLKG 100 antistatic bag mga-64606-tr1g 3000 7 reel mga-64606-tr2g 10000 13 reel
for product information and a complete list of distributors, please go to our web site: www.avagotech.com avago, avago technologies, and the a logo are trademarks of avago technologies in the united states and other countries. data subject to change. copyright ? 2005-2011 avago technologies. all rights reserved. av02-2888en - november 15, 2011 reel dimensions


▲Up To Search▲   

 
Price & Availability of MGA-64606-BLKG

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X